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1. INTRODUCTION

Let G = (V, E) be a non-directed finite graph without loo

ps and multiple edgeé.f

- such tha

2 {uﬁ l’]) €
~ tioned m

31 If

Having chosen a fixed ordering wy, W, ..., w, of the set ¥, we can form a square’,;f %' ot a(G»)
n-rowed matrix 4(G) whose off-diagonal entries are a, = a,; = —1 if (Wi w)eE | '

and ay, = 0 otherwise and whose diagonal entries a;; are equal to the valencies of ~ Proof
the vertices w;. This matrix A(G), which is frequently used to enumerate the spanningf;'j | =min(>
trees of the graph G, is symmetric, singular (all the row sums are zero) and positivq o + ;e(vg’)

semidefinite (4(G) = UUT where U is the (0,1, —1) vertex-edge adjacency matrix =t 7
of arbitrarily directed graph G). Let n > 2 and 0 = M SA=a(G) L3S .. 32. C
.-+ = 4, be the eigenvalues of the matrix A(G). From the Perron-Frobenius theorem L o vertice
applied to the matrix (n — 1) I — A(G) it follows that a(G) is zero if and only if the

graph G is not connected. We shall call the second smallest eigenvalue a(G) of the 3.3. Le
matrix A(G) algebraic connectivity of the graph G. It is the purpose of this paper to all adjac
find its relation to the usual vertex and edge connectivities.

We recall that many authors, e.g. A. J. HorrmaN, M. Doos, D. K. RAY-CHAUD-fwum‘(I)
HURI, J. J. SEIDEL have characterized graphs by means of the spectra of the (0, 1) Proof
and (0, 1, —1) adjacency matrices. sayu,. D

2. NOTATION AND CONVENTIONS

The notation introduced above is used througho\‘ut the present paper. All matrices P
and vectors are considered real. The transpose of a matrix M is denoted by M7, the
identity matrix by I, the vector (1,1,.., 1)T by e, the universal matrix ee” by J, the
cardinality of a set S by |S].

For our purpose it is convenient to denote by W the set of all column vectors * \
such that x"x = 1, xTe = 0. Any square matrix M with all zero row sums has an a(G,) +

*) Presented at the Graph Theory Meeting in Zlata Idka, May 1971.
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eigenvalue 0 and a corresponding eigenvector is e. If M is positive semidefinite then
the second smallest eigenvalue is equal to min x"Mx by the well known Courant’s
theorem. We use that principle tacitly. xew

Further, let us mention two common concepts. Edge connectivity of the graph G,
i.e. the minimal number of edges whose removal would result in losing connectivity
of the graph G, is denoted by e(G). Vertex connectivity which is defined analogously
(vertices together with adjacent edges are removed) is denoted by v(G). It is convenient
to put o(G) = n — 1 for the complete graph G. .

Let G, = (V}, Ey), G, = (Vs, E;). By G; x G, we denote the graph (V; x V,, E)
such that ((u;, u,), (v,, v,)) € E if and only if either u; = v, and (u,, v;) € E, or

(4, v) € E; and u, = v,. Let R = (r:;)> S be matrices. Then by R x S the parti-
tioned matrix (r,;S) is denoted.

3. PROPERTIES OF q(G)

edges. | 3.1. If Gy, G, are edge-disjoint graphs with the same set of vertices then a(G,) +

SQUaLe bt a(G;) < a(G, U G,).

nw)eEif =

cfes of |  Proof. We have AG, U G,) = A(G)) + A(G,). Thus a(G; U G,) =

aning | =min(xT A(G)) x + xT A(G,) x) = min xT A(G,) x + min xT A(G,) x = a(G)) +
v i xeW xeW xeW

ositive + 4(Gy).

matrix v

- 3.2. Corollary. The function a(G) is non-decreasing for graphs with the same set
f vertices, i.e. a(G,) < a(G,) if G, = G, (and G, G, have the same set of vertices).

.3. Let G be a graph, let G

= 1 arise from G by removing k vertices from G and
ll adjacent edges. Then

roof. Let G have n vertices and let G, arise from G by removing one vertex,
Y 4,. Define a new graph G’ by completing in G all missing edges from u,. Then

A(G) = < (G)) +1, —eT )

—e, n—1

Let v be an eigenvector of A(G,) corresponding to the eigenvalue a(G,). Since

49)(5) = 6 + 11 ().

Gy) + 1 is an eigenvalue of A(G’) different from zero, i.e.

a(G') < a(G,) + 1.
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By 3.2, a(G) < a(G’) which implies (1) for k = 1. The general case fonowg by
induction.

3.4. We have a(G; x G,) = min (a(Gy), a(G,)).

Proof. Let G, = (Vp E,), G, = (Vz, E2). Order the set V; x V, lexicographicguy; .
Then A(G; x G,) = A(G)) x I, + I, x A(G,), I; being the |V;]-rowed identity

matrix. By a well known result from the matrix theory [1] all eigenvalues of A(G, x

X G,) are of the form u + v where 1, v Tesp. are eigenvalues of A(G,), A(G,) respec-
tively. Hence the second smallest eigenvalue of A(G, x G,) is either a(Gy) + 0 or :

0 + a(G,).
3.5. Let G = (V, E), v; be the valency of the j-th vertex. Then
a(G) < [n/(n — 1)] min v; < 2|E|/(n - 1).

Proof. Since n min v; < Y'v; = 2|E|, the second inequality is true. The first is an

immediate consequence of the following lemma.

Lemma. Let M = (m) be a symmetric positive semidefinite n by n matrix such
that Me = 0. Then the second smallest eigenvalue A, of M satisfies

(2 42 = [n(n — 1)] min m;; .

1

Proof. Observe that

(3) A, = min x"TMx .
xeW
Let us show that the matrix

M = M = 22(1 - n—IJ)
is also positive semidefinite.

Let y be any vector in E,. Then y can be written in the form y = c,e + c,x where
x € W. Since Me = 0, it follows that

Y'My = 3xTMx = 2(x"™Mx — )20
by (3). Thus the minimum diagonal entry of M is nonnegative:
min my; — A(1 —n~1) 2 0
and (2) is proved. l

Remark. A matrix M = (m,) satisfying conditions of the preceding lemma has
also the property that the numbers /m;; fulfil the polygonal inequality, i.e.

2max mi/? < Yml/?.
i i
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This follows easily from the well known fact that M can be considered as the Gram
matrix of a system of n vectors uy, ..., u, with sum zero:

My = (u ) = uju,, Yu, =0,
Then we have for the lengths

[u;] < Dlu for i=1,..n,
k*i

or
2max [u;| < 3 uj
and |u;| = (u;, u))'? = m}/? yields the result.
If we apply (4) to the matrix M = M — A5(I = (1/n) J), we obtain

2mz:.x (my — [(n — D)/n] 2,)"? < Zi(m,-,- — [(n = 1)/n] 2)"/2.

t In terms of the graph G, we obtain

2 max [nv; — (n — 1) a(G)]'/? < Y[nv; — (n — 1) a(G)]>.
i i
For sake of completeness, we formulate the assertion

3.6. For the complete graph K, with n vertices a(K,) = n.
In the ‘following theorem, we denote by b(G), for a graph G with n vertices, the

umber
b(G) = n — a(0)
vhere G is the complementary graph to G.

.1. The function b(G) has following properties:

2 b(G) is the maximum eigenvalue of A(G) or, equivalently

b(G) = max x™ 4(G) x ;
xeW

a(G) = b(G),

b(G) = ‘max b(G))

—

G, are all components of G;
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3° b(G,) < b(G,) if G, = G,, i.e. Vi €V, and E,
i=1,2;

4°

< E, where G, =(y‘;‘

b(G, v G,) < b(G,) + b(G,) — a(G; n G,)
where both graphs G, and G, are considered to have the same set of vertices;

5° [n/(n — 1)] mailx v{G) < b(G) £ 2 m?x v{(G)

where v(G) means valency of the i-th vertex in G.

Proof. If G is the complementary graph to G (with n vertices so that G has a]sb
vertices) then
A(G) + A(G) = nl — J.

Since
a(G) = min xT A(G) x
xeW
and
xT(nI = J)x=n for -xeW,
we have

max x* 4(G) x = n — min x” A(G) x = n — a(G)

xeW xeW ’

This implies (6). Let equality be attained in (6). Then xT A(G) x is constant on W,
Taking first x = [n(n — 1)]7"/? (ne; — ) where e, has all coordinates zero except

= b(G).

the i-th equal to one, we obtain that all the diagonal entries in A(G) are equal.f?'-ffi- :

Choosing then x = 271/2¢, — 271/2,, (i + k), we obtain that also all off-diagonal =
entries of A(G) are equal, thus all equal either to —1, or to zero. This proves 1°, :
2° follows easily from 1° since 4(G) is the direct sum of A(G,) if G is not connected
and G; are components of G.
To prove 3° and 4°, we shall use (6). This implies 3° immediately while 4° follows
'from

A(Gy v Gy) = A(G,) + A(G,) — A(G, 1 Gy).

!

The right inequality in 5° follows from 1° and the well known fact that the maxi-
mum modulus of the eigenvalues is less than or equal to any norm. The maximum
norm (i.e. with respect to the vector norm |x| = max |x,]) of A(G) (known to be

max )" |a,|) is 2 max v/(G) which yields this result. To prove the left inequality in 5°
i X i
let us apply 3.5 to the complementary graph G. We obtain

a(G) = [n/(n — ])] min v,-(G)
which can be written as ‘

n—b(G) < [nf(n — 1)][n — 1 — max v(G)] .
i
This implies the inequality and the proof is complete.
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7). ; 3.8. We have
a(G) 2 2minv(G) — n + 2.

Proof. Follows immediately from the right inequality in 5° of 3.7 used for the
complementary graph G.

3.9. Let G with n vertices contain an independent set of m vertices (i.e. no two of
them joined by an edge of G). Then

on aG)sn—m.

Proof. If G contains an independent set of m vertices then G contains a complete
subgraph K. Since b(K,,) = m, we have by 3° of 3.7 that

b(G) = m
so that a(G) =n — b(G) < n — m.

1 3.10. If G is a graph with n vertices which is not complete then a(G) < n — 2.

~ Proof follows immediately from 3.9.

a W.
oo 3.11. If K, , denotes the complete bipartite graph the parts of which contain p
jual. nd q vertices then a(K, ;) = min (p, q).
onal

roof. Follows from 2° of 3.7 applied to the complement of K o
scted

12. Let G = (V, E), let V.=V, UV, be a decomposition of V, let G, (i=1,2)
lows e the subgraph of G generated on V,. Then

a(G) = min (a(G,) + |V, a(G,) + |V3)) -

naxi- : roof. This is just a symmetric formulation of 3.3.
mum :
o be
ins 4. RELATIONS BETWEEN a(G), ¢(G) AND v(G)

.1. Let G be a non-complete graph. Then a(G) < v(G).

roof. Let G = (V, E) and let ¥, be a vertex cut such that V,=V—=V, 0.
the subgraph G, generated by G on V, is not connected, we have by 3.12

a(G) < |v,].

mplies the assertion.
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4.2. We have v(G) < ¢(G).

Proof. This well known inequality is an easy consequence of the fi ollowing theo
Let w, ' be a pair of vertices of G. Then there exist v(G) paths between w, W' ingG
no two of them having any vertices in common (except w, w).

4.3. Let C; = 2[cos (n[n) — cos (2n/n)], C, = 2 cos (n/n) (1 — cos (n/n)) and let
q(G) be the maximum vertex valency of the graph G. Then

a(G) = 2 ¢(G) (1 — cos (n/n)),
a(G) = C, ¢(G) — C, q(G),
- Author’

the second bound being better if and only if 2 ¢(G) > ¢(G).

Proof. Consider the eigenvalues o, = ¢, > ... = o, of the matrix S = (sy) =
=1 — q~*(G) A(G). This matrix is symmetric and stochastic (i.e. its row sums are_
and the entries are nonnegative so that ¢, = 1). Denote by u the “measure of irreduc

ibility” of S, the number min )" s, where N = {1,2, ..., n}. Then accordin
to [2] O+MEN ieM kM

1 -0, 221~ cos(n/n))u,
1 —0,21-2(1— p)cos(n/n) — (2u — 1) cos (2n/n).
We have o = 1 — a(G)/a(G). u = ¢(G)/a(G), thus
a(6)/q(G) = 2(1 — cos (n/n)) ¢(G)/4(G),
a(G)[4(G) = 1 = 2(1 — ¢(G)/a(G)) cos (n/n) ~ (2¢(G)/q(G) — 1) cos (2n[n),
which implies the required inequalities.

The last assertion is easy to verify.

4.4. We have the following values for some types of graphs.

graph a(G) e(G) v(G) bound of 4.3

path 2(1 — cos (n/n)) 1 1 2(1 — cos (n/n))

circuit 2(1 — cos (2n/n)) 2 2 4 sin? (n/n)

star 1 1 1 2(1 — cos (n/n))

complete g. n n—1 n—1 | 2(n— 1)sin? (z/n)
| cube

(m-dimensional) 2 m m 2m sin? (/2m)
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Remark. After having finished this paper the author was informed that W. N.

- ANDERSON, Jr. and T. D. MoRLEY had obtained some of these results in the paper

Eigenvalues of the Laplacian of a graph, University of Maryland Technical Report

~ TR-71-45, October 6, 1971.
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